Warning: Undefined array key "cacheTitle" in /var/www/html/uzcms/shijiemudan.com/index.php on line 1141
 바카라 확률 - 신뢰할 수 있는 사이트

师资队伍

当前位置: 首页  >  师资队伍  >  正文

李庆涛

发布时间:2023-01-09     点击数量:

基本信息 undefined

姓名:李庆涛

出生年月:1980.7

学位:博士

职称:副教授、硕导

研究领域:钢筋混凝土抗火、新型建筑材料、建筑物保护与加固

招收研究生专业:结构工程,防灾减灾工程与防护工程

李庆涛,男,2011年获日本山口大学博士学位,中国矿业大学第九批校级青年学术带头人,第九批校级优秀青年骨干教师,中国勘察设计协会抗震防灾分会会员,江苏省住房和城乡建设厅科技发展中专家库专家。主要讲授《钢筋混凝土结构设计》、《土木工程制图与计算机绘图》、和《建筑工程事故诊断与分析》等课程。主持国家自然科学基金项目、中央高校基本科研业务基金项目、中国矿业大学“启航计划”项目等科研项目,荣获省部级科技进步二等奖3项。获得国家授权专利10余项。在Construction and Building Materials、Magazine of Concrete Research、Advances in Cement Research、Journal of Building Engineering、Structural Concrete、建筑材料学报等期刊上发表论文30余篇,编写教材、著作5部,参编江苏省标准、图集3部。

E-mail:li.qingtao@cumt.edu.cn

主持或主要研究人员参加的科研项目

1、淮海科技城创智中心5、6号楼全装配框架抗震安全项目,126万元,2019/1-2022/12;

2、预制装配式混凝土住宅标准化叠合楼板试验研究,10万元,2019/1-2021/12;

3、长三角近前缘地带钻孔灌注桩全过程质量控制关键技术研究,44.5万元,2018/1-2022/12;

4、科技楼楼顶网架工程安全性评估,20万元,2018/9-2020/12;

5、新庞庄村房屋损伤检测及处理方案研究,18万元,2016/5-2018/12;

6、国家自然科学基金项目,火灾后混凝土性能恢复促进技术研究,25万元,2013/01 - 2015/12;

7、国家自然科学基金项目,考虑端部约束非定常性的钢筋混凝土框架梁的火灾行为研究,25 万元,2019/01-2021/12;

8、中央高校基本科研业务费项目,掺粉煤灰-矿渣粉复合胶凝材料混凝土的抗火性能研究、6万元、2013/01-2015/12;

9、中国矿业大学卓越计划教材建设项目,2万元,2017/12-2019/12;

10、2021年教育部产学合作协同育人项目“智能建造新专业建设”(202102234003)。

代表性学术成果:

(1)第一作者或通讯作者学术论文

[1] Experimental study on the effect of fireproof coating and cooling methods on the mechanical properties of concrete exposed to high temperature, Construction and Building Materials,2023,376(131045)

[2] Effects of elevated temperature on the mechanical properties of concrete with aggregate of waste porcelain tile,Journal of Building Engineering,2023, 64(105585).

[3] Experimental study on the free expansion deformation of concrete during the cooling process after being heated at high temperature Construction and Building Materials, 2022, 337(127617).

[4] Effect of heating rate on the free expansion deformation of concrete during the heating process. Journal of building engineering, 2021, 34: 101896.

[5] Influence of curing age on the mechanical properties of fly ash concrete exposed to elevated temperature. Structural concrete, 2021, 22:868-883.

[6] Investigation on the free expansive deformation of concrete during the heating process, Construction and building materials, 2021, 306(124871).

[7] Effects of moisture content and heating temperature on the thermal expansion deformation of concrete, Structural concrete, 2021.7

[8] Bond behavior between cement-based grouting material and steel bar under repetitive loading after being exposed to high temperature at early age. Construction and building materials, 2020, 262:120023.

[9] Natural restoration of mechanical properties of concrete subjected to high temperature, Advances in cement research, 2019.1:1-12.

[10] Improvement of bond behaviour between steel bar and concrete subjected to elevated temperature at early age, Magazine of concrete research, 2018.70(17):885-893.

[11] Degradation of the elastic modulus of cement-based grouting material with early ages after fire, Construction and building materials, 2018(187):510-518.

[12] Bond characteristics between early aged fly ash concrete and reinforcing steel bar after fire, Construction and building materials, 2017(147):701-712.

[13] Residual compressive strength of cement-based grouting material with early ages after fire, Construction and building materials, 2017(138):316-325.

[14] The use of surface coating in enhancing the mechanical properties and durability of concrete exposed to elevated temperature. Construction and building materials, 2015, 95:375-383.

[15] Effects of heating/cooling on recovery of strength & carbonation resistance of fire-damaged concrete. Magazine of concrete research 2014, 66(18), 925-936.

[16] Effect of elevated temperature on the mechanical properties of high-volume GGBS concrete. Magazine of concrete research 2014, 66(24):1277-1285.

[17] The effect of a proprietary inorganic coating on compressive strength and carbonation depth of simulated fire-damaged concrete. Magazine of concrete research 2013, 65(11), 651-659.

[18] Effect of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material. Construction and building materials, 2012, 35, 687-692.

[19]无机涂层对高温后混凝土抗压强度的修复. 建筑材料学报. 2019,22(1):60-64.

[20]研讨式教学法在钢筋混凝土结构设计教学中的探索与实践,高等建筑教育,2019.28(2):63-68.

(2)获奖

[1]装配式空腔楼盖耐火关键技术及其钢结构工程示范应用,中国钢结构协会技术创新奖,2021;

[2]建筑物整体下降关键技术的研究与应用,2019年度江苏省建设科技创新成果奖,2020;

[3] 土木工程专业立体化实践教学体系的构建和实施,中国煤炭教育教学成果一等奖,2017;

[4] 结构安全与防灾减灾系列教材建设成果,中国煤炭教育教学成果三等奖,2017;

[5]火灾全过程中大跨度钢结构整体坍塌概率预测技术,中国消防协会科学技术进步二等奖,2016;

[5]建筑物整体移动基础理论及关键技术研究与应用,河南省科学技术进步二等奖,2015;

[6]山体内复杂变形条件下煤矿卸载站加固技术研究与应用,中国煤炭工业科学技术二等奖,2013。

(3)教材及著作

[1] 《混凝土结构与砌体结构设计》,中国建筑工业出版社,2023;

[2] 《建筑结构检测鉴定与加固技术》,武汉大学出版社,2022

[3] 《建筑工程事故诊断与分析》,中国建材工业出版社,2021;

[4] 《钢筋混凝土结构设计》,中国矿业大学出版社,2020;

[5] 《采动区超高压输电铁塔破坏机理与变形控制技术研究》, 中国矿业大学出版社,2018。

(4)授权专利

[1] 一种老旧板式阳台承重结构的加固方法,2023.3.10,ZL202210787644.4

[2] 一种筏板基础的修复加固方法,2022.5.6,ZL202111147021.2

[3] 一种柱下独立基础超载冲切破坏的加固方法,2022.6.7,ZL202111144765.9

[4]一种组合式高压输电线杆不均匀沉降的纠偏方法,2020.10.30,ZL201910323512.4

[5] 一种预应力钢筋混凝土梁改造加固方法,2022.5.27,ZL202110950573.0 (已转让)

[6] 一种压屈钢筋混凝土柱的顶升加固方法.2020.3.13,ZL201811555781.5(已转让)

[7] 一种组合式框架结构抗火试验系统及试验方法,2019.3.29,ZL201710009880.2(已转让)

[8] 一种加固钢筋混凝土板极限承载力的计算方法,2021.10.19,ZL201811391791.X(已转让)

[9] 一种降低钢筋混凝土框架结构高度的方法,2017.1.25,ZL201510052237.9(已转让)

(5)参编标准和图集

[1] 江苏省标准:《建筑工程施工质量鉴定标准》,2021;

[2] 江苏省图集:《预制装配式混凝土住宅标准化叠合楼板图集》,2021;

[3] 江苏省标准:《建筑物掏土纠倾技术标准》,2022。